Welcome
Company Info
History
In may 1995, after a bid for all the shares, the complete group 'Clark Equipment Company' changed hands to the American group 'Ingersoll Rand', although not for long.  On February 14th 1997, the final sell of the complete Clark-Hurth Components division to Dana Corporation took place.   Ever since, our company belongs to the Off-Highway Systems Group of Dana.  Hardly one month after the take-over, Brugge was entrusted with the development of all transmissions for the world market.  Financial means were allocated for the extension of a 'state-of-the-art' research- and development center.
bruggeplantinfo
New Product Development
In a couple of years, New Product Development in Bruges evolved from a supporting group to a pioneer-group.  The first engineering steps were situated at the process-level : the development of the new products still took place in Statesville (USA), while Bruges was only a production plant.

This changed in 1985 with the foundation of the electronic controls group.  The goal at that moment was to support the powershift transmission products for off-highway applications.  The market (and mainly Scandinavia) was starting to show an interest in getting automatic shifting systems instead of normal gear shifting. Initially the group outsourced hardware and software, but in 1987 an own development was started based on the now very popular INTEL 80C51 microcontroller.  The first product was called APC100, of which more than 7000 units were sold in over 300 different applications.

The development of a low cost shift lever with built in direction change and overspeeding protection ('91) moved the controls design responsibility completely to Bruges. Now mechanical engineering made its move: The development of the T16000 transmission with improved shifting (due to electro-mechanical modulation) turned out to be a real success. Up till now more than 8000 units have been sold. Not much later the hydraulic and electronic control groups were merged, and as of then electronic clutch control systems were developed for the new off-highway transmissions. The responsibility of Bruges was expanded from controls design to full product development responsibility for some products. Five years and the development of a whole range of new products and systems later (e.g. electronic inching combined with electronic throttle) we have world wide responsibility for transmissions in the off-highway industry. At this moment New Product Development consists of about 40 people and we are still in full expansion.
Core Competences
Electric-Hydraulic Valves
Electric-hydraulic valves are the interface between the microcontroller and the transmission (clutches). They control oil pressure and flow to the clutches. Stability and responsiveness are major issues here. The new designs are developed and proven by using the latest tools on the market: Rapid prototyping, solid modelling, simulations and testing increase development speed as well as built up knowledge. Prototypes are modelled using Pro Engineer to generate 3D solid models. Dedicated valves are used for control of hydrostatic and multispeed hydrodynamic systems.
Electric-Hydraulic Valves
Clutches
Clutches basically consist of friction plates and separators. One part of the clutch is connected to the input, the other to the output. By pressurizing, a piston forces the plates against each other, resulting in torque transfer from input to output. The wet clutches are mainly used in off-highway applications as they can be closed under full load conditions. The clutch is a very critical mechanical component. Not only the torque transfer (static - dynamic), but also the thermal behaviour as well as efficiency and controllability are areas where knowledge and technology are important. For this reason we have people dealing full time with clutch calculations and design. Also several teststands are dedicated to further build up knowledge.
Clutches
Simulations
Simulations allow us to discover potential design-flaws in a much earlier phase than we used to do. The impact of certain (H/W) changes can be judged sooner, and examination of eigenfrequencies can already be done during the design phase. Another strength of simulations can be found in root-cause analysis, where a huge time reduction is noticed. Clearly, all of the above positively influence both development time and cost. At this time, the use of simulations in the Controls department is mainly twofold: on one hand there is the hydraulic behaviour of the valves (functionality, vibrations, responsiveness, …), on the other, we simulate the dynamic behaviour of a complete vehicle, where the transient situation during shifts can be fully examined. For these applications, ITI-sim and Matlab/Simulink are used.
Close cooperation with other departments permanently leads to new challenges and solutions.
Simulations
Microcontroller Hardware
All required hardware used by SOHPD is developed in house.  The assembly is outsourced to subcontractors.
Our main goal is building robust control systems for Off-Highway equipment.  Major challenges to reach this target are:

  • Reliable conditioning of signals from speed sensors, throttle and brake pedal, … 
  • Precise control of pressure modulating valves.
  • Adherence to safety standards (e.g. IEC1508) - Fault tolerance
  • Severe environmental conditions (vibrations, temperature, sealing, …)
  • EMC tolerant design

To validate our designs, state of the art EDA (Electronic Design Automation) software is used.  Integration of layout, steered and automated routing, schematic design and documentation has become inevitable.
Simulations
Software
Software can be seen as the real core of the system as it allows customizing applications and providing excellent control of different mechanical systems.
The development covers both embedded programming of 8 and 16 bit microcontrollers and development of PC-software.
The latter mainly concerns development of tools for communication with the controller (parameter-tuning, statistics, diagnostics, etc.).
In the embedded software three layers can be distinguished:

  • Real time Operating Systems & BIOS 
  • Algorithms: developed per application type.
  • Applications: adjusted to the customer's specification.

Embedded software is developed using C and PL/M-51
In-circuit emulators, debuggers, CAN analysers and logic analysers are used to develop bug free software.  The software is developed per IEC 1508 and VDE 801 standards to meet the international safety requirements.

Simulations
Gears, Shafts, Bearings and Houses
Duty cycle measurements in the field tell us how the transmissions are loaded for a specific machine and application (wheel loaders, telescopic boom handlers, lift trucks...). These load spectra are used to predict the life of gears and bearings.
The calculations include the total behaviour of the system (influences of gear mesh deflections, shaft deflections, bearing deformations, housings...)

The gear geometry is optimised for manufacturability and load stresses. Applying microtopology modifications is an advanced technique to optimise contact pattern and reduces transmission error (dynamic behaviour leading to noise)

Bearings are selected based on load types, life requirements and assembly possibilities. Full engineering co-operation of major bearing suppliers helps optimising the design for cost.

Material and heat treatment are selected based on the design and manufacturing requirements.

The calculations are validated by running accelerated load tests in our test lab. Failure analysis is an important part of the process used to determine the real limits of the components.
Simulations
Finite Element Model
A lot of our components are too complex for an analytical stress and deformation calculation. Here FEM is used:

  • Failures in the testing phase (and in the field) are prevented,
  • components are designed with an optimal functionality (weight, inertia, ...)
  • at the lowest production cost without loss of reliability.
The FEM-software is also able to model (non-linear) contacts. This can be used to model complete assemblies and to simulate their functionality: e.g. pressure distribution in a clutch.

Also thermal and dynamic calculations (vibrations,...) are done with FEM. In this way the dream of virtual prototyping is gradually coming closer.
Simulations
CAD
Computer Aided Design
Full 3D parametric software (Pro Engineer) is used primarily to make use of its advanced possibilities:
  • Rapid prototyping on complex shaped parts to reduce lead times
  • Offer 3D virtual models of our products to our customers
  • Automatic detail drawing creation
  • 3D assemblies
  • Parametric behaviour
Powerful workstations and a lot of own customisation in the software improve the efficiency.
Simulations
Testing